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A simple modification of the density-functional theory (DFT) total energy functional is proposed that cor-
rects for the polaron self-interaction error in semilocal approximations to the exchange-correlation potential. It
can accurately reproduce polaron formation in wide-bandgap insulating materials. An extensive study of the
potential energy landscapes of self-trapped holes in alkali halides is performed and agreeable comparison with
hybrid DFT calculations and experiment is obtained. The new functional is general, simple to implement, and
its variational formulation allows for ab initio molecular dynamics simulations of polarons in wide-bandgap
insulators regardless of complexity.
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In wide-bandgap insulators charge excitations can couple
to lattice distortions and thereby localize spatially. The quasi-
particle resulting from this process known as a polaron is a
single localized electron or hole dressed by a phonon cloud.
In the limit where the coupling between charge excitations
and phonons is strong one obtains small or Holstein polarons
[1], characterized by large but localized ionic displacements.
Small polarons are so strongly bound to the lattice that their
dynamics can often be considered classical [2, 3]. Under-
standing their formation and transport thus calls for ab initio
calculations of adiabatic, and sometimes diabatic [4], poten-
tial energy landscapes (PEL) of insulators containing charge
excitations.

Small polarons appear in many technologically relevant
materials including scintillators [5], batteries [6], and func-
tional oxides [7]. Famously they appear in ionic crystals such
as the alkali and earth alkali halides. In these systems hole
carriers resulting from valence excitations open up the closed
valence shells and allow for covalent bonding. As a result, a
pair of nearest-neighbor halogen ions can dimerize and trap
a hole leading to structures of the type shown in the inset
of Fig. 1. The combined charge excitation (localized hole)
and lattice distortion can be regarded as a point defect in the
crystal lattice. In halides this hole polaron is commonly re-
ferred to as a VK-center [8]. It is also known that in halides
structure and transport of VK-centers are related to those of
self-trapped excitons [9]. Understanding the properties of po-
larons and self-trapped excitons is essential for modeling the
microscopic processes associated with scintillation [10].

Density-functional theory (DFT) is a computationally effi-
cient parameter-free methodology for calculating the chemi-
cal and electronic properties of materials from first principles.
While it has been widely successful for many applications
it qualitatively fails to describe polaron formation in wide-
bandgap insulators both in the local density approximation
(LDA) and the generalized gradient approximation (GGA)
[11]. (Note that while LDA and GGA fail to predict the struc-
tural energies of polarons in normal insulators they offer ac-
curate energies for the same systems when in their neutral

closed-shell states). By contrast, self-trapping and polaron
formation are readily captured on the level of Hartree-Fock
theory. The latter, however, delivers a poor description of the
electronic structure of solids leading to largely overestimated
band gaps and polaron formation energies. Hybrid techniques
that combine semi-local exchange-correlation (XC) function-
als with exact-exchange [12, 13] provide a bridge between the
two techniques and constitute the state-of-the-art for studying
various aspects of polarons in insulators, see e.g., [6, 11, 14].
The drawbacks of these hybrid methodologies are mainly
twofold: (i) They are computationally very expensive, which
limits their applicability to cases where the polaronic distor-
tions are reasonably simple. In particular, exploring the mech-
anisms and rates for polaron transport using hybrid DFT func-
tionals can be quite daunting. (ii) Hybrid DFT calculations
are not parameter free. The fraction of exchange needs to
be determined for a reference configuration and is then fixed
through all configurational changes. This is justified as long as
the overall electronic dielectric screening is not significantly
altered.

Let us start by illustrating the failure of the DFT to predict
polaron formation by quantifying its error for the prototyp-
ical VK-center in NaI. In this system introduction of a hole
in the valence band leads to a substantial lattice distortion, in
which a pair of nearest-neighbor I− ions move along ⟨110⟩
toward each other, reducing their distance from 4.5 Å in the
perfect crystal to about 3.3 Å , effectively forming I−2 . This
distortion is accompanied by displacements of the surround-
ing atoms in order to accommodate the strain. Figure 1 shows
the PEL along the pathway to hole self-trapping from DFT
calculations based on the PBE XC functional [15], the PBE0
hybrid functional [12] as well as a modified PBE0-based hy-
brid functional (optimized hybrid), for which the fraction of
exact-exchange is chosen to be 0.325 in order to reproduce
the experimental band gap of NaI. Calculations were carried
out using the project augmented wave method [16] as imple-
mented in the Vienna ab initio simulation package [17] using
a plane wave energy cutoff of 176 eV. We employed 216-atom
supercells and the Brillouin zone was sampled using the Γ-
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FIG. 1. Energy as a function of the two iodine ions that for the core of
the VK -center in NaI. The optimized hybrid has a mixing parameter
of α = 0.325 to be compared to α = 0.25 for the PBE0 functional
[12]. In agreement with the hybrid functionals DFT+pSIC calcula-
tions yield a stable polaron configuration while the DFT fails quali-
tatively.

point only. The comparison in Fig. 1 demonstrates that in-
clusion of exact-exchange is essential for capturing polaron
formation in NaI. It is also evident that the polaron forma-
tion energy sensitively depends on the choice of the hybrid
parameters as its value is reduced by a factor of two when
the fraction of exact-exchange is changed from 0.325 (opti-
mized hybrid) to 0.25 (PBE0). Note that in the absence of
charge excitations, DFT predicts accurate structural energies,
e.g. phonon spectra and defect formation energies.

There is little controversy to why DFT fails to stabilize
small polarons in wide-bandgap insulators. While the self-
interaction (SI) in LDA/GGA functionals leads to a large er-
ror in the description of localized polarons, the error is much
smaller in the case of delocalized carriers. The introduction
of explicit exchange largely corrects for the SI and allows for
electron localization and polaron formation. The importance
of SI was first discussed by Perdew and Zunger [18], who also
proposed a one-electron approximation to the SI correction
(SIC). This method greatly improves the description of atoms
but has been less successful when applied to molecular struc-
tures and energies [19]. In recent years the SI error, in partic-
ular in finite systems with well-defined levels, has been dis-
cussed in terms of the deviation of the total energy functional
from a piece-wise linear dependence on (fractional) level oc-
cupation with discontinuous derivatives at integer occupations
[20–23]. It has been argued that optimal parametrizations of
hybrid functionals should minimize this deviation [24]. In or-
der to quantify this notion consider a many-electron system at
a reference ground state with N0

e electrons. Let EDFT(∆) de-
note the total energy of this system as a function of the number
of electrons ∆ in excess of N0

e , calculated within DFT. Now
we define ΠDFT[∆] as the deviation of EDFT from linear de-
pendence around N0

e

ΠDFT[∆] = ∆× µ±
DFT − (EDFT[∆]− EDFT[0]), (1)

where |∆| ≤ 1, and µ+
DFT (µ−

DFT) is the right (left) derivative

of EDFT with respect to electron number at N0
e for positive

(negative) ∆. In an effort to go beyond the one-electron ap-
proximation to SIC, Dabo et al. [21] proposed a new class
of SIC functionals by augmenting the DFT energy with ap-
proximate forms of ΠDFT. In practice, they used the devi-
ation from piece-wise linearity of the band structure energy
with respect to change of occupation of each single-particle
orbital as their approximation to ΠDFT. This approach, quite
like the Perdew-Zunger SIC, works well for atoms and may
behave better for molecules but nevertheless both methods are
difficult to implement in extended systems since they lead to
orbital-dependent potentials that are not invariant under uni-
tary transformations among the occupied orbitals [19, 25].

In the following, we formulate a new DFT-based energy
functional that yields accurate polaron energies in wide-
bandgap insulators by eliminating the polaron SI (pSI). Con-
sider a system consisting of N0

e electrons and Np ions. The
ion positions are specified by the 3Np-dimensional vector
R. The ground state energy of this system is described by
EDFT[∆,R], where ∆ is the number of electrons in excess
of N0

e . Using Eq. (1) we can express the total energy of the
system with an electron added or removed from it as

EDFT[±1;R] = EDFT[0;R]± µ±
DFT[R]−ΠDFT[±1;R].

(2)

We employ ΠDFT as a measure of pSI and formulate an energy
functional that is free of this pSI. Note that in contrast to Dabo
et al. [21] we do not resort to an approximate form of ΠDFT.
Note, however, that the deviation from piece-wise linearity
does not account for all the error in e.g., LDA or GGA. For
illustration consider perfect crystalline systems such as Si or
NaI. These systems are well described by the band picture and
the delocalized carriers near the top (bottom) of the valence
(conduction) bands have negligible ΠDFT(∆). Nevertheless it
is well-known that DFT fails to accurately predict ionization
energies (µ−) as well as electron affinities (µ+) as manifested
in the severe underestimation of band gaps by LDA/GGA. The
band gap error originates from the absence of derivative dis-
continuities in LDA/GGA XC functionals [26, 27]. The cor-
rection to µ±

DFT can be calculated for example by many-body
perturbation theory within the GW formalism [28]. Finally,
the energy functional for the system in excess of an elec-
tron/hole becomes

U±[R] = EDFT[0;R]±
[
µ±

DFT[R] + δΓ±
GW

]
. (3)

Our goal is to use the above functional to perform struc-
tural relaxations of polaronic systems where DFT fails. The
structure of the above equation is similar to Eq. (2). We
have only replaced ΠDFT with the scissors shifts of the con-
duction/valence bands δΓ±

GW . One necessary condition for
Eq. (3) to be useful is that DFT accurately describes the struc-
tural energies of the reference system, i.e. EDFT[0;R] is ac-
curate. For normal insulators, this can be satisfied by choos-
ing the reference system to be a closed-shell neutral insulator.
The crucial approximation in Eq. (3) that makes it computa-
tionally feasible is the neglect of the R-dependence of δΓ±

GW,
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which is to say we neglect the contribution of the scissors
shift to the atomic forces. This is motivated by the work of
Gygi and Baldereschi [29], who showed that due to the low
excitation energies involved, δΓ±

GW is dominated by the long-
range components of the static Coulomb hole plus screened
exchange (COHSEX) contributions. Later it was shown that
δΓ±

GW ≈ α±/ε∞ [30], where α± and ε∞ (electronic dielec-
tric constant) can be considered to vary weakly with localized
lattice distortions, which is typical of polarons that preserve
the structural long-range order as well as the insulating state.
While this justifies the assumption of R-independent δΓ±

GW

above, it further implies that the accuracy of Eq. (3) can be
improved by incorporating R-dependence into δΓ±

GW through
simplified COHSEX approximations without resorting to full-
blown GW calculations.

Recently similar strategies to Eq. (3) were used to correct
the DFT charged defect formation energies in semiconduc-
tors using full GW calculations for δΓ±

GW [31]. However,
in these works all structural relaxations had to be performed
strictly within DFT. Our aim here is to devise a robust method
for structural relaxations/ab initio molecular dynamics simu-
lations of polaronic systems that is easy to implement in exist-
ing DFT codes and is nearly as efficient as LDA/GGA. Equa-
tion (3) is not suitable for this purpose since µ±

DFT is not a
variational quantity and therefore its contribution to atomic
forces cannot be evaluated using the Hellman-Feynman (HF)
theorem. In the following, we show how this problem can be
avoided. For this purpose we derive a total energy expression
equivalent to Eq. (3) that is composed of individually varia-
tional components for which forces can be calculated using
the HF theorem. Let us start by stating the desired form for
such a total energy functional,

U±[R] =
N∑

n=0

wnEDFT[±δn;R]. (4)

Above wn are constant coefficients and δn are small charge in-
crements. Note that every R-dependent term in Eq. (4) is vari-
ational. The strategy is thus to replace µ±

DFT in Eq. (3) with ex-
plicit numerical differentiation of the energy functional EDFT
with respect to the number of electrons. One then ends up
with a weighted sum of N + 1 total energies at a number of
fractional electron increments δn as in Eq. (4). In the simplest
case we have N = 1 with δ0 = 0 and |δ1| ≪ 1, which im-
plies w1 = 1/δ1 and w0 = 1 − 1/δ1. Since δ1 needs to be
small in magnitude the weights wn become large. This in turn
requires the individual total energies to be converged with a
very small residual error in order to obtain reasonably accu-
rate values of U±. This problem can be avoided by increasing
the number of replica N . For the calculations presented in
this paper, we have found that N = 2, with δn = 2.5×10−3n
works well, and with individual total energies converged to
better than 10−6 eV we have been able to perform structural
relaxations to within 1 meV/Å in terms of residual forces. For
N > 1 the coefficients wn are calculated by minimizing the
following functional with respect to the two variational pa-

rameters U+
0 [R] and U+

1 [R]

min
{U+

0 ,U+
1 }

N∑
n=0

[
EDFT[δn]− (U+

0 + δnU
+
1 )
]2

. (5)

Note that for brevity we have omitted the dependence on R
in Eq. (5) and only consider positive charge increments. Min-
imization with respect to U+

0 and U+
1 leads to the following

linear system of equations(
N + 1

∑N
n=1 δn∑N

n=1 δn
∑N

n=1 δ
2
n

)(
U+
0

U+
1

)
=

( ∑N
n=0 EDFT[δn]∑N

n=1 EDFT[δn]δn

)
(6)

By solving the above matrix equation and expressing the new
total energy U±[R] as

U±[R] = U±
0 [R] + U±

1 [R], (7)

we can demonstrate that indeed as stated in Eq. (4), U± can
be written as a weighted sum of N + 1 variational total en-
ergies with the coefficients wn having no dependence on R.
As a result the atomic forces can be calculated from the linear
combination of separate HF forces following Eq. (4). We have
implemented the energy functional Eq. (4) in the Vienna ab
initio simulation package [17] allowing for the N + 1 replica
to be run in parallel. The individually converged energies and
forces are collected from all replicas and combined according
to Eq. (4) after each ionic step.

Let us now review results obtained from the pSI-corrected
(pSIC) energy functional applied to the PBE XC functional
[15] using 216-atom supercells and a 3 × 3 × 3 k-point grid.
Comparison to calculations that included only the Γ-point for
sampling the Brillouin zone showed little change in the re-
sults. Revisiting Fig. 1 we see that in contrast to the DFT-
PBE results, the new PBE-pSIC functional leads to a stable
VK-center configuration, whose geometry and energetics are
in excellent agreement with the optimized hybrid functional.
The bond-length of the I−2 dimer that constitutes the core of
the VK-center is calculated to be 3.39 Å (3.30 Å) when using
the pSIC (optimized hybrid) scheme while the energy gain due
to self-trapping is found to be 0.24 eV (0.28 eV).

To further establish the accuracy of the pSIC method, we
conducted an extensive comparison of its predictions with op-
timized hybrid functional calculations for the VK-centers in
alkali halides with rocksalt structure. These materials con-
stitute a diverse class of wide-bandgap insulators with band
gaps ranging between 5 to 13 eV and lattice constants from
4.0 to 7.3 Å. It is important to note that while the pSIC func-
tional is parameter free, a range of mixing parameters for the
exact-exchange must be used spanning from 0.28 for LiI to
0.45 for KBr in order for the hybrid method to reproduce
the experimental band gaps. Figure 2(c) shows the depen-
dence of the optimal mixing parameter on ε−1

∞ and verifies
that a good choice for the optimal mixing parameter is typi-
cally close to ε−1

∞ [32, 33]. Figures 2(a) and (b) show com-
parisons of polaron formation energies [34] and geometries,
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FIG. 2. Comparison of (a) VK -center formation energies and (b) halogen–halogen separation at the core of the VK -center between DFT+pSIC
and hybrid DFT calculations. (c) Fraction of exact-exchange (mixing parameter of the hybrid functional) used for different halides to reproduce
the experimental band gap as a functional of the latter as a function of the inverse electronic dielectric constant.

TABLE I. Activation barriers for polaron migration in units of eV
from calculation and experiment.

Rotation Angle Optimized hybrid DFT+pSIC Experiment
60◦ 0.25 0.197 0.2
90◦ 0.32 0.250 > 60◦

120◦ 0.25 0.199 0.2
180◦ 0.28 0.186

respectively, between optimized hybrid functionals and the
pSIC functional for 12 compounds. The halogen dimer sep-
aration distances range from 2.0 Å to 3.4 Å, while the forma-
tion energies vary between −0.3 eV and −1.1 eV. Neverthe-
less, the agreement between optimized hybrid functionals and
the pSIC-functional is astonishing. Also note that while cor-
rections must be applied in the case of the hybrid calculations
due to the long-range electrostatic interaction of polarons with
their periodic images, the pSIC energies are free of such er-
rors.

Up to now we have demonstrated that the pSIC functional is
capable of quantitatively describing polaron formation in al-
kali halides without adjustable parameters. In order to further
establish the validity of this approach, we have also calculated
using the climbing image nudged elastic band method [35] the
activation barriers for the four most plausible migration path-
ways of VK-centers in NaI as shown in Table I. These migra-
tion pathways involve rotations of the halogen dimer through
various angles commensurate with the symmetry of the rock-
salt structure. We have chosen NaI since the polaron diffusiv-
ity has been quantified experimentally for this system [36]. To
this end polarons were created and and aligned along a partic-
ular direction (polarized) using a pump laser, after which their
relaxation time for rotation was measured via a probe laser.
Note that such experiments cannot measure the activation bar-
rier for translation here referred to as the 180◦ pathway since
it does not involve a change in polarization. For the same rea-
son the experiments can also not distinguish between 60◦ and

120◦ rotations. At about 50 K almost exclusively 60◦/120◦

rotations were observed, indicative of the fact that the activa-
tion barriers for these rotations must be significantly smaller
than for 90◦ rotations. This result is confirmed by both op-
timized hybrid and pSIC calculations, see Table I. By fitting
an Arrhenius curve to the temperature dependence of the rota-
tional relaxation time in the experiments, one obtains an acti-
vation barrier for the 60◦/120◦ rotations of about 0.2 eV. This
is in almost perfect agreement with the pSIC result while the
optimized hybrid calculations overestimate this barrier.

In conclusion, we have shown that the failure of DFT to
describe polaron formation in wide-bandgap insulators is due
to the self-interaction error associated with addition/removal
of charge. We have devised a simple variational total energy
functional, which implements an exact correction for this self-
interaction error. There still remains an additional scissors
correction that can in principle be obtained from G0W0 cal-
culations. We then argued that for localized lattice distortions
that do not significantly effect the overall electronic dielectric
screening, the change in the scissors shift with atomic dis-
placements can be neglected, and thus simple HF forces can
be used to perform structural relaxations. This was demon-
strated to be true by studying self-trapped hole formation and
migration in the family of alkali halides using the new pSIC
functional in comparison with hybrid functionals. It is ob-
served that the parameter-free pSIC functional with a compu-
tational cost similar to the DFT, may at times be even superior
in accuracy to the hybrid technique.
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